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Renpenning syndrome belongs to a group of X-linked in-
tellectual disability disorders. The Renpenning syndrome–
associated protein PQBP1 (polyglutamine-binding protein 1) is
intrinsically disordered, associates with several splicing factors,
and is involved in pre-mRNA splicing. PQBP1 uses its C-termi-
nal YxxPxxVL motif for binding to the splicing factor TXNL4A
(thioredoxin like 4A), but the biological function of this interac-
tion has yet to be elucidated. In this study, using recombinant
protein expression, in vitro binding assays, and immunofluores-
cence microscopy in HeLa cells, we found that a recently
reported X-linked intellectual disability–associated missense
mutation, resulting in the PQBP1-P244L variant, disrupts the
interaction with TXNL4A. We further show that this interaction
is critical for the subcellular location of TXNL4A. In combina-
tion with other PQBP1 variants lacking a functional nuclear
localization signal required for recognition by the nuclear
import receptor karyopherin �2, we demonstrate that PQBP1
facilitates the nuclear import of TXNL4A via a piggyback mech-
anism. These findings expand our understanding of the molec-
ular basis of the PQBP1–TXNL4A interaction and of the etiol-
ogy and pathogenesis of Renpenning syndrome and related
disorders.

Renpenning syndrome, a group of X-linked intellectual dis-
ability, is caused by mutations in human PQBP1 (polyglu-
tamine-binding protein 1, also known as Npw38) gene on
Xp11.2 (1–3). PQBP1 gene encodes an intrinsically disordered
protein predominantly expressed in the central nervous system
during development and playing important roles in neurode-
velopment and neuronal functions (4 –7). PQBP1 is composed
of three interacting domains: a WW domain interacting with
the nucleocytoplasmic shuttling splicing factor WBP11 (also
known as SIPP1/NPWBP/SNP70) (8 –10); a polar amino acid–

rich domain (PRD)2 interacting with polyglutamine tracts (11,
12); a proline–tyrosine nuclear localization signal (PY-NLS)
recognized by nuclear import receptor karyopherin �2 (Kap�2)
(13); and an unstructured C-terminal domain (CTD) interact-
ing with splicing factor TXNL4A (14 –18). Despite its interac-
tion with splicing factors, PQBP1 is also found present in the
precatalytic B complex (19, 20), suggesting the involvement of
PQBP1 in alternative pre-mRNA splicing. Wang et al. (21)
reported that depletion of Pqbp1 in mouse primary cortical
neurons changed alternative splicing of mRNAs enriched for
neuron projection functions and resulted in reduced outgrowth
and branching of dendrites. However, most mutations of
PQBP1 found in Renpenning syndrome patients, except for the
missense mutation Y65C in the WW domain (22), are frame-
shift mutations in the PRD or CTD region, resulting in prema-
ture termination (1–3). How different mutations affect PQBP1
function remains unclear. We previously discovered that
PQBP1-�459 – 462 and �463– 464 mutants encode a new
epitope that specifically associates with FMRP (fragile X mental
retardation protein) and promotes its degradation (23). It
points out the fact that frameshift mutations may gain unex-
pected functions with the new sequences, instead of just losing
the original ones. It makes the mechanistic study more
complicated.

Human TXNL4A (also known as U5–15kD/snRNP15/
hDim1) is an evolutionarily highly conserved component of the
U5 and U4/U6.U5 small nuclear ribonucleoprotein particles
(24). Its yeast ortholog Dim1/Dib1/Snu16 is essential for
pre-mRNA splicing in vivo (25, 26). TXNL4A has a thiore-
doxin-like fold formed by four-stranded �-sheets flanked by
three �-helices (24) and binds a continuous 23-residue segment
of the C-terminal domain of PQBP1 (14, 16). The structure of
the binary complex of TXNL4A and PQBP1 shows that the
hydrophobic groove of TXNL4A formed by Val14, Ile18, Phe69,
Met72, Tyr73, Met82, and Phe84 recognizes the 245YxxPxxVL
motif of PQBP1 (17). This complex is mainly stabilized by these
hydrophobic interactions as well as two hydrogen bonds
(PQBP1-Y245: TXNL4A-E74; PQBP1-N255:TXNL4A-D68)
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(17). PQBP1 frameshift mutants that lack the C-terminal
domain cannot interact with TXNL4A, which is believed to
affect the function of PQBP1 in splicing (17). The interaction of
PQBP1 and TXNL4A seems important for the localization of
TXNL4A. Exogenously expressed TXNL4A is predominately
diffused in the cells but will form large punctate nuclear struc-
ture if co-expressed with PQBP1 (15). Whether PQBP1 pro-
motes the nuclear import of TXNL4A has yet to be elucidated.

Recently, Redin et al. (27) identified a new missense mutation
of PQBP1 (c.731C�T, P244L) in a targeted high-throughput
sequencing test in intellectual disability or autism patients. This
mutation is right before the 245YxxPxxVL252 motif of PQBP1
for TXNL4A binding. In this study, we found that the PQBP1-
P244L mutant disrupted the interaction with TXNL4A. In
combination with other PQBP1 NLS mutants, we clearly
showed that PQBP1 facilitates the nuclear import of TXNL4A
in a piggyback mechanism.

Results

PQBP1-P244L mutant disrupts its interaction with TXNL4A

Previous studies show that TXNL4A recognizes a 245Yxx-
PxxVL252 motif in the C-terminal domain of PQBP1, which is

missing in PQBP1 frameshift mutants found in Renpenning
syndrome patients. Our in vitro binding assay also demon-
strated that GST–PQBP1-�461– 462 and �575–576 lost their
binding capacity to TXNL4A, whereas the missense mutation
Y65C in the WW domain did not affect TXNL4A binding (Fig.
1, A–C), and the RPY mutant in the NLS region only slightly
affected TXNL4A binding (Fig. 1, A–C). Redin et al. (27)
reported a new missense mutation in the CTD of PQBP1
(c.731C�T) using targeted high-throughput sequencing,
which changes residue 244 from proline to leucine (P244L).
Pro244 is right before the 245YxxPxxVL252 motif (Fig. 1A) and
was not identified in crystal structures as a “hot spot” for
TXNL4A binding (17). We were curious about whether P244L
would affect the binding to TXNL4A, so we generated the
recombinant mutant protein GST–PQBP1-P244L for in vitro
binding assay. The result showed a significant decrease in
TXNL4A binding of GST–PQBP1-P244L (�17.6% of GST–
PQBP1–WT), which is comparable with that of GST–PQBP1-
�575–576 (�13.2% of GST–PQBP1–WT) (Fig. 1, B and C).

In the structure of PQBP1–CT43 (238 –260 amino acids) in
complex with TXNL4A (Protein Data Bank code 4BWQ),
PQBP1 takes an L-shaped structure, and residues 238 –247 are

Figure 1. The C-terminal mutations of PQBP1 disrupt its interaction with TXNL4A. A, schematic demonstration of protein domain structures of PQBP1–WT
and mutants. The mutated regions are highlighted with red. Y65C, the missense mutant in the WW domain; �461– 462, frameshift mutant c.461– 462del,
p.E154Afs*12; �575–576, frameshift mutant c.575–576del, p.K192Sfs*7; P244L, the missense mutation in C-terminal domain; RPY, tetra-point mutant (180RR181

and 186PY187 to alanines) in the nuclear localization signal. B, in vitro binding assays show the interactions of GST–PQBP1–WT and mutants with TXNL4A.
Immobilized GST–PQBP1–WT and mutants were incubated with purified recombinant TXNL4A. Representative results from three independent experiments.
C, densitometric analysis of B. The relative density of TXNL4A band against GST–PQBP1 band in each reaction was normalized to that in the reaction with
GST–PQBP1–WT (100%). The data show as means � S.D. from three independent experiments. ****, p � 0.0001. MW, molecular mass.
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in an extended conformation followed by an �-helix formed by
residues 248 –259 (17). Pro244 sits in a small cavity formed by
Lys88, His89, and Met91 of TXNL4A, and it is not involved in
hydrophobic interactions or hydrogen bonds with TXNL4A
(Fig. 2A). Indeed, P244A mutant only showed a fairly small
change in TXNL4A binding, indicating that Pro244 is not a hot
spot (Fig. 2, B and C). Mutagenesis analysis using PyMOL (28)
showed P244L mutation introduced a long side chain in the
small space, and the collision might disrupt the interface
between PQBP1 and TXNL4A (Fig. 2A). To test this, we
made an additional mutant P244V that also introduces a long
side chain at that site and performed the binding assay. As we
expected, both PQBP1-P244V and P244L mutant proteins
showed remarkable reduction in TXNL4A binding (Fig. 2, B
and C). We demonstrated that a single residue mutation
P244L in the CTD of PQBP1 abolished its interaction with
TXNL4A.

PQBP1 contains a PY-NLS recognized by Kap�2

PQBP1 is dominantly localized in nuclei (6, 8, 29, 30). Previ-
ous reports show that PQBP1 contains a PY-NLS and is a sub-
strate of nuclear import receptor Kap�2 (13). The PY-NLS of
PQBP1 is within the residues 170 –187 region right before the
C-terminal domain (Fig. 3A). It is composed of a N-terminal
basic residue-enriched epitope, a conserved Arg residue in the
middle, and PY residues at the C terminus. To disrupt the inter-
action between PQBP1 and Kap�2, we mutated 180RR181 and
186PY187 to alanines by site-directed mutagenesis (Fig. 3A) and
tested its binding ability to Kap�2. An in vitro binding assay
showed that Kap�2 bound to the GST–PQBP1–RPY mutant
reduced to less than 10% of that bound to GST–PQBP1–WT
(Fig. 3, B and C). Meanwhile, we compared the interactions of

other PQBP1 pathogenic mutants with Kap�2. The missense
mutation in the WW domain Y65C did not affect the interac-
tion between PQBP1 and Kap�2, whereas the �461– 462
frameshift mutant lacking the partial PRD, NLS, and the entire
CTD lost its binding to Kap�2 (Fig. 3, B and C). The frameshift
mutant �575–576 that changes the sequence right after the
NLS caused �50% loss of Kap�2 binding, and the missense
mutant in CTD P244L slightly affected Kap�2 binding (Fig. 3, B
and C). These data verify that the interaction between PQBP1
and nuclear import receptor Kap�2 is mainly mediated by the
PY-NLS within the region of residues 170 –187.

PQBP1 can simultaneously bind Kap�2 and TXNL4A

PQBP1 interacts with Kap�2 and TXNL4A through differ-
ent regions, which made us suspect that PQBP1 might bind
Kap�2 and TXNL4A simultaneously. We immobilized GST–
PQBP1–WT proteins on GSH resins and incubated with a mix-
ture of TXNL4A and Kap�2. The results clearly showed that
PQBP1 bound Kap�2 and TXNL4A together (Fig. 4A), indicat-
ing that PQBP1 might function as a connector between Kap�2
and TXNL4A. Furthermore, when we immobilized MBP–
TXNL4A to test its interaction with soluble Kap�2 in the pres-
ence or absence of different PQBP1 proteins, we found
that MBP–TXNL4A bound Kap�2 only in the presence of
PQBP1–WT (Fig. 4B). In the presence of PQBP1-P244L, MBP–
TXNL4A could not bind Kap�2 because its interaction with
PQBP1 was disrupted; whereas in the presence of PQBP1–RPY
mutant, MBP–TXNL4A associated with PQBP1–RPY, but
PQBP1–RPY could not bind Kap�2 because of the loss of PY-NLS
(Fig. 4B). Our data confirm that PQBP1 mediates the interac-
tion between TXNL4A and nuclear import receptor Kap�2.

Figure 2. The C-terminal mutations of PQBP1 disrupt its interaction with TXNL4A. A, structure mutagenesis analysis on the complex of PQBP1–CT43 and
TXNL4A. The structure of PQBP1–WT and TXNL4A was adopted from Protein Data Bank structure 4BWQ. Green cartoon, PQBP1; gray surface, TXNL4A; yellow
surface, the three residues Lys88, His89, and Met91 in TXNL4A that form the small cavity accommodating Pro244 in PQBP1. Mutagenesis analysis was done with
PyMOL, and the side chains of mutated residues are shown as stick model and highlighted with red. B, in vitro binding assays show the interactions of
GST–PQBP1–WT and P244 site mutants with TXNL4A. Immobilized GST–PQBP1–WT and mutants were incubated with purified recombinant TXNL4A. Repre-
sentative results from three independent experiments. C, densitometric analysis of B. The relative density of TXNL4A band against GST–PQBP1 band in each
reaction was normalized to that in the reaction with GST–PQBP1–WT (100%). The data are shown as means � S.D. from three independent experiments. **, p �
0.01; ***, p � 0.001. MW, molecular mass.
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The interaction with PQBP1 is critical for the nuclear import of
TXNL4A

Next, we investigated whether Kap�2-mediated nuclear
import of PQBP1 also facilitates the import of TXNL4A. We
co-transfected pEGFP–C1–TXNL4A with pFLAG–CMV2–
PQBP1–WT or different mutants into HeLa cells and measured
the cytoplasmic and nuclear fluorescence signals of EGFP and
anti-FLAG, respectively. FLAG–PQBP1–WT, Y65C, �575–
576, and P244L were mainly in the nucleus (N/C ratio, 4.69,
4.80, 4.68, and 5.74), but the other two mutants without the
PY-NLS FLAG–PQBP1-�461– 462 and RPY diffused through-
out the cell (N/C ratio, 1.06 and 1.87) (Fig. 5A). It suggests that
PY-NLS is critical for proper nuclear location of PQBP1.
EGFP-TXNL4A by itself diffused in the cell (N/C ratio, 1.28),
but when it was co-transfected with PQBP1–WT or Y65C, it
was dominantly in the nucleus (N/C ratio, 2.90 or 2.63) (Fig. 5,
A, and B). This PQBP1-facilitated nuclear import of EGFP-
TXNL4A was abolished when the cells were co-transfected
with FLAG–PQBP1-�461– 462, �575–576, P244L, and RPY
(N/C ratio, 1.38, 1.13, 1.80, and 1.42) (Fig. 5, A and B). Among
these four mutants, FLAG–PQBP1-�461– 462 and RPY lost
their PY-NLS, whereas FLAG–PQBP1-�575–576 and P244L
lost their interaction with TXNL4A. Collectively, both the
PY-NLS and C-terminal TXNL4A-binding string are required
for PQBP1-facilitated TXNL4A nuclear import (Fig. 5C).

Discussion

Both PQBP1 and TXNL4A are evolutionarily conserved mol-
ecules and components of spliceosome (15, 19, 20, 24, 31–33).
The molecular interaction between them is well-established
(14 –18), but what the biological function of this interaction is
remains unclear. TXNL4A is a member of the U5 spliceosomal
complex and mainly functions in the nucleus. There is no obvi-
ous NLS in its sequence, and its molecular mass is only 15 kDa.
So, it is easy to believe that it gets into the nucleus through
passive diffusion by default. However, our study using exoge-
nously expressed proteins demonstrates that receptor-medi-
ated active transport is also involved in TXNL4A nuclear
import. It is transported with PQBP1 through Kap�2-mediated
pathway in a piggyback mechanism. Interestingly, we noticed
that TXNL4A-GFP was more accumulated in the nucleus (32)
than EGFP-TXNL4A (15), indicating the EGFP tag position
might affect the subcellular distribution of TXNL4A. Given
that the N terminus of TXNL4A is responsible for PQBP1 bind-
ing (17), N-terminal tagging could affect its interaction with
PQBP1 and reduce its import efficiency. Because of the very low
expression level and inaccessibility to antibodies of endogenous
TXNL4A, we have not been able to test the import of endoge-
nous TXNL4A yet. Our data show that PQBP1 and TXNL4A
are not just associated in the spliceosome, but they may be
transported together. Llorian et al. (34) showed that splicing

Figure 3. PQBP1 binds to the nuclear import receptor Kap�2 through its PY-NLS. A, the sequences of PQBP1–WT and RPY mutants at PY-NLS. The
three-epitope structure of PY-NLS consensus sequence is shown at the top. The mutated residues are highlighted with red. B, in vitro binding assays show the
interactions of GST–PQBP1–WT and mutants with Kap�2. Immobilized GST–PQBP1–WT and mutants were incubated with purified recombinant Kap�2.
Representative results from three independent experiments are shown here. C, densitometric analysis of B. The relative density of Kap�2 band against
GST–PQBP1 band in each reaction was normalized to that in the reaction with GST–PQBP1–WT (100%). The data are shown as means � S.D. from three
independent experiments. *, p � 0.05; **, p � 0.01; ****, p � 0.0001. MW, molecular mass.
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factor WBP11, another PQBP1 interactor, could be piggyback-
transported into the nucleus through the interaction with the
PQBP1 WW domain. It seems that the full function of PQBP1
in splicing factor transport requires both the WW domain (35)
and the C-terminal domain to be intact, suggesting that PQBP1
is a “two-pronged” adaptor for the transport of splicing factors.

PQBP1 is an intrinsically disordered protein with a small
folded WW domain and long disordered regions encompassing
the PRD and CTD. The unstructured C-terminal region of
PQBP1 undergoes disorder-to-order transition upon complex
formation with TXNL4A, and the evolutionarily conserved
245YxxPxxVL252 motif in this region is critical for PQBP1–
TXNL4A binding (17, 36). Residues Tyr245, Pro248, Val251, and
Leu252 are involved in the hydrophobic interactions with
TXNL4A to stabilize the complex. Residue Pro244 not involved
in any hydrophobic interactions or hydrogen bonds with
TXNL4A sits in a small cavity on the surface of TXNL4A that
can only accommodate short side chains. This accommodation
is critical for the proper position of Tyr245 in the hydrophobic
groove of TXNL4A because P244V and P244L mutants do not
bind TXNL4A, but P244A does. In the structure of a fusion
protein of TXNL4A residues 4 –137 and PQBP1–CT43, resi-
dues 223–243 and 260 –265 of PQBP1 are missing because of
conformational flexibility, whereas residue Pro244 is still pres-
ent in the structure (17), which provides another line of evi-
dence to support the importance of proper accommodation of
residue 244.

Most mutations of PQBP1 found in Renpenning syndrome
patients are frameshift mutations in the PRD and CTD regions,
resulting in premature terminations (1–3). They share the com-
mon phenotypes like intellectual deficiency, microcephaly, short
stature, and microrchidia (2, 37). PQBP1-P244L missense muta-
tion was recently identified in intelligent disability patients using
targeted high-throughput sequencing (27). These patients show
moderate intellectual disability, poor autonomy, communication
and social interaction disorders, learning difficulties, and obvious
autistic behaviors (27). The quite different phenotypes in P244L
patients indicate a distinct molecular pathogenesis. Our study
shows that P244L mutation has a slight effect on its own subcellu-
lar localization and structure but significantly affects the subcellu-
lar distribution and potential function of its partner TXNL4A. It
suggests a new pathogenic mechanism of Renpenning syndrome.

Experimental procedures

Plasmid construction

For protein expression, the cDNAs encoding full-length protein
of PQBP1 WT or TXNL4A were inserted into pGEXTEV or
pMALTEV vector, respectively. PQBP1-Y65C, �461–462, �575–
576, P244A, P244V, P244L, and RPY mutants were generated by
site-directed mutagenesis. For cell transfection, PQBP1–WT
and mutants were subcloned into pFLAG–CMV2 vector and
TXNL4A into pEGFP–C1 vector. pGEXTEV–Kap�2 was ob-
tained from Chook lab (University of Texas Southwestern Medical
Center). All constructs were verified by DNA sequencing.

Recombinant protein expression

All GST or MBP fusion proteins were expressed in Esche-
richia coli BL21 cells. Bacteria were cultured in LB broth (Gen-
eray Biotech, Shanghai, China) and induced by 1 mM of isopro-
pyl �-D-thiogalactopyranoside for 4 h at 25 °C or 12–16 h at
4 °C. The proteins were purified with GSH–Sepharose (G-Bio-
sciences) and amylose resins (New England Biolabs, Ipswich,
MA) as previous described (23).

In vitro binding assays

GST–PQBP1–WT and mutant fusion proteins immobilized
to GSH resins were incubated with purified TXNL4A or Kap�2
proteins at 4 °C for 30 min and extensively washed with TB
buffer (20 mM HEPES, pH 7.3, 110 mM KOAc, 2 mM MgOAc, 2
mM DTT, 1 mM EGTA, 10% glycerol). Bound proteins were
visualized using SDS-PAGE and Coomassie Blue staining.
Approximately 5 �g of immobilized GST–PQBP1 proteins
were incubated with �20 �g of purified TXNL4A or �20 �g of
purified Kap�2. Approximately 25% of the bound proteins was
loaded for gel analysis.

MBP–TXNL4A proteins immobilized on amylose beads
were incubated with Kap�2 in the presence or absence of
PQBP1–WT, PQBP1-P244L, and PQBP1–RPY mutants. Bound
proteins were separated using SDS-PAGE and visualized with
Coomassie Blue staining (MBP–TXNL4A) or Western blotting
(Kap�2 and PQBP1).

Cell culture, transfection, and immunofluorescence

HeLa cells were transfected with plasmids using X-treme
GENE HP DNA transfection reagent (Roche, Basel, Switzer-

Figure 4. PQBP1 binds Kap�2 and TXNL4A simultaneously. A, in vitro
binding assays show the interactions of GST–PQBP1–WT with Kap�2 and
TXNL4A. Immobilized GST–PQBP1–WT was incubated with purified recombi-
nant TXNL4A alone, Kap�2 alone, or Kap�2 with TXNL4A. Shown are repre-
sentative results from three independent experiments. B, Western blots show
the interactions of MBP–TXNL4A with PQBP1 and Kap�2. Immobilized MBP–
TXNL4A was incubated with purified recombinant Kap�2 in the presence or
absence of PQBP1–WT or mutants. Representative results from three inde-
pendent experiments. MW, molecular mass.
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land) according to the manufacturer’s protocol. After 16 h, the
transfected cells were fixed with 4% paraformaldehyde in PBS
for 20 min followed by permeabilization in 0.5% PBST for 10
min. After three washes, the cells were briefly blocked with 3%
BSA in PBS, followed by incubation with anti-FLAG antibody
(1:300, mouse, Abmart, Shanghai, China) at room temperature
for 2 h. Then the samples were washed in 0.1% PBST and incu-
bated with Alexa 555–labeled anti-mouse antibody (1:400,
Abcam, Cambridge, UK) for 2 h at room temperature before
mounting using the mounting medium with 4�,6�-diamino-2-
phenylindole (Vector Laboratories Inc., Burlingame, CA). The

cells were examined under a Leica DM5000 B (Leica, Ger-
many). The fluorescence images were analyzed with ImageJ
software (National Institutes of Health), and the data from
three independent experiments were averaged. The quantita-
tive data are means � S.D.

Author contributions—X. L. and Z. C. Z. data curation; X. L.,
L.-X.D., and Z. C. Z. formal analysis; X. L. and L.-X.D. methodology;
X. L., J. H., and Z. C. Z. writing-original draft; J. H. and Z. C. Z. fund-
ing acquisition; J. H. and Z. C. Z. project administration; Z. C. Z.
conceptualization; Z. C. Z. supervision.

Figure 5. PQBP1 facilitates the nuclear import of TXNL4A. A, immunostaining shows the subcellular localizations of transfected PQBP1 and TXNL4A. HeLa
cells were transfected with pFLAG–CMV2–PQBP1–WT or mutants in the presence of pEGFP–C1–TXNL4A. Scale bar, 20 �m. B, quantification of the nuclear/
cytoplasmic fluorescent intensities of EGFP-TXNL4A signals. The data show the means � S.D. from three independent experiments. *, p � 0.05; **, p � 0.01. C,
the model of PQBP1-facilitated nuclear import of TXNL4A via the Kap�2-mediated pathway. DAPI, 4�,6�-diamino-2-phenylindole.
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